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Abstract-The problem of steady-state mass transfer with axial diffusion of decaying products resulting 
from the disintegration of an inert gas is considered for a slug and a Poiseuille pipe flow. The products of 
disintegration are filtered out at the tube inlet, but are again generated by radioactive decay of a flowing 
inert gas along the cylindrical tube. The radio-elements diffuse axially and radially to the tube walls where 
they decay into other radio-elements. 

Because of the P&ck?t number dependence, the effects of the axial diffusion on the concentration distribu- 
tion, the local Sherwood number, and the F(t) values are studied for P&clet numbers of 1, 5, 10, 20, 30, 
50, 100 and z. 

For the Poiseuille pipe flow, asymptotic expressions for the eigenvalues and the eigenfunctions are also 
obtained. 

NOMENCLATURE 

coefficients of series expansion in 
equation (7) ; 
mass concentration of the decaying 
product ; 
local bulk concentration, defined as 

7 v, cr dr,r v,r dr ; 

fully established mass concentration; 
defined as c - cf ; 
coefficients of series expansion in 
equation (15) ; 
coefficient of diffusion ; 

defined as 2x 7 v,cr dr!xrixq ; 

0 

t This work was performed under the auspices of the 
U.S. Atomic Energy Commission. 

F;F(t), 

1, 
Pe, 

P”kl)~ 

4, 

r, 
r0? 

Wh 

Sk 

vx, v,, 

V, 
X, 

defined as ~z~(v,c - Daclax) 
0 

x r dr/&xq ; 
mass flux density ; 
P&let number of diffusion, defined 
as ReSc = (2Vr,/D) ; 
eigenfunctions for equations (8) and 

(9) ; 
rate of formation of the decaying 
product per unit volume of gas ; 
radial coordinate distance ; 
inner radius of the tube ; 
eigenfunctions for equations (16) 
and (17); 
Sherwood number, defined as 

M2rO)/D ; 
axial and radial velocity components, 
respectively; 
mean flow velocity ; 
axial coordinate distance : 
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eigenvalues of equations (8) and (9), 

such that a,’ = A:[ 1 + (2&/Pe)2] ; 
eigenvalues of equations (16) and 

(17); 
eigenvalues of equations (8) and (9) ; 
defined as r/r0 ; 
defined as x/(r,, ReSc) ; 
defined as 2x/(r,ReSc) = 2l; 
dimensionless mass concentration, 
defined as Dcjqr; ; 
defined as Dc*jqr$ ; 
defined as Dc,jqrf,; 
dimensionless axial and radial 
velocity components, defined as v,JV 
and v,/V, respectively. 

INTRODUCTION 

THE PROBLEM of steady-state mass diffusion 
of a constituent in a generating but nonreacting 
binary gas mixture flowing through a cylindrical 
tube, assuming azimuthal symmetry and 
constant coefhcient of diffusion can be written 
mathematically as [l] : 

ac ac 

=D[;;$)+$]+q (1) 

The diffusion of radium-A radio-elements result- 
ing from the disintegration of radon gas in air 
flowing through a cylindrical tube [l, 21, for 
instance, is depicted by such an equation. In this 
situation, v, and v, are, respectively, the axial 
and radial velocity components of the gas ; 
c, the mass concentration of the radio-elements ; 
D, their coefficient of diffusion; and q, the rate 
of formation of these radio-elements per unit 
volume of the following gas. 

Since equation (1) is mathematically analo- 
gous to that of heat transfer in a cylindrical 
tube where q then denotes the rate of heat 
generation within the fluid, it is apparent that 
any solution of equation (1) is directly applicable 

to the corresponding heat transfer problem 
involving similar boundary conditions. 

The usual assumptions made in the solution 
of equation (1) are those of negligible secondary 
flows and negligible diffusion in the axial 
direction, such that the terms involving v, and 
Z2c/ax2 can be eliminated from the equation, 
Such a problem has been studied by Tan [1] in 
an earlier paper on diffusion involving a uniform- 
velocity, a parabolic-velocity, and a Langhaar- 
velocity profile. 

The assumption of negligible secondary flows, 
i.e. v, = 0, is probably justifiable for flows in 
relatively long tubes since its significance 
diminishes rapidly away from the tube inlet. In 
his analysis of heat transfer in the entrance 
region of cylindrical tubes, Kays [3] showed 
that the effect of the v, term is quite small com- 
pared to the term on the left-hand side of 
equation (1) for 5 > 0.02. The other assumption 
of negligible axial diffusion is not always 
justifiable, however, particularly for fluids with 
high diffusivities flowing at low mean velocities. 
Based on the simplifying assumption of a 
uniform-velocity profile, Schneider [4] has 
analyzed the effect of axial conduction on 
entrance-region heat transfer and concluded 
that it is quite appreciable if the P&let number 
is < 100. This conclusion is later confirmed by 
Hsu [5] in his exact mathematical analysis on 
entrance-region heat transfer for a Poiseuille 
pipe flow. 

The need for neglecting axial diffusion in the 
traditional analysis is partly due to the fact 
that its inclusion in the diffusion equation will 
make the latter no longer amenable to known 
feasible mathematical manipulations. A basic 
mathematical difficulty arises since the differ- 
ential equation then reduces to a Whittaker- 
type differential equation [4] for which the 
eigenfunctions are not orthogonal. This consti- 
tutes a major drawback in the computation of 
the coefficients of series expansion. To remedy 
this difficulty, Singh [6] expressed the eigen- 
functions as an infinite series of Bessel functions 
of order zero which are orthogonal over the 
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finite interval of integration. The differential 
equation for the problem is then reduced to an 
infinite set of linear simultaneous algebraic 
equations for the coefficients of the series. The 
technique, however, does not readily render 
higher eigenvalues, which are needed especially 
for small P&cl& numbers. Hsu [5] has proposed 
a relatively simple mathematical scheme which, 
together with the aid of a high-speed digital 
computer, gives the pertinent eigenvalues and 
eigenfunctions. Moreover, this technique does 
not present any undue complication in deter- 
mining the higher eigenvalues. 

In this analysis of mass transfer with axial 
diffusion, a slug flow (uniform-velocity profile) 
and a Poiseuille pipe flow (parabolic-velocity 
profile) will be considered. For the latter case, 
the method used by Hsu [5] will be employed. 
Because of the P&let number dependence, 
determination of the eigenvalues, eigenfunctions, 
and coefficients of series expansion will be given 
for n = l-20 for arbitrarily selected PC&t 
numbers of 1, 5, 10, 20, 30, 50, 100 and co. In 
addition, asymptotic expressions for the eigen- 
values for the corresponding PC& numbers will 
be given. 

MATHEMATICAL ANALYSIS 

In brief, the diffusion problem of decaying 
products of an inert gas under consideration is 
to seek solution to equation (1) under the follow- 
ing boundary conditions : 

c(0, r) = 0 (24 

c(m, r) = cJ. (W 

$x,0) = 0 

c(x, ro) = 0. (2d) 

The first boundary condition is a constraint of 
an experimental technique reported in [2] of 
placing a high efficiency filter at the tube inlet 
to remove any particulate matter; the second is 
as a consequence of the requirement that, for 

large x, the solution should revert to the fully 
established concentration profile which has been 
given in [1] ‘as 

(3) 

the third is the symmetry requirement at the 
center of the tube; and the last indicates com- 
plete annihilation of the radio-elements as they 
come in contact with the tube walls (see footnote 
on p. 473 of [l]). 

To find the concentration solution satisfying 
equations (1) and (2), it is convenient to define a 
new concentration variable, c* = c - cs 
Further, by introducing the following dimension- 
less parameters : 

r] = r, 
b 

<= x 
r,Re . SC 

where r. is the inner radius of the tube ; V is the 
mean fluid velocity; and Re and SC are, respec- 
tively, the Reynolds number and the Schmidt 
number; it can be readily shown that equations 
(1) and (2) become 

and 

**(o, VI = - $(l - Yj2) 

ll/*(Q rl) = 0 

F (5,O) = 0 

1(/*(r, I) = 0. 

(5a) 

(5b) 

(5c) 

(5d) 
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The PC&t number of diffusion has been 
defined as Pe = Re SC. 

In this study, solutions are sought to satisfy 
equations (4) and (5) for a slug flow (uniform- 
velocity profile) and a Poiseuille pipe flow 
(parabolic-velocity profile). The required solu- 
tions will be expressed in the same form as that 
for the case of no axial diffusion. The latter 
may then be regarded as a special case of the 
more general problem in which axial diffusion 
is taken into account. 

Solution for uniform-velocity profile 
With the simplifying assumption of a uniform- 

velocity profile as in slug flow, i.e. ,4, = 1 and 
LI, = 0, and letting p = 25, equation (4) reduces 

Assuming the so1utio.n in the same form as that 
for the case of no axial diffusion [1] : 

Il/*k v) = “:I &P,(v) ev ( - 4%) (7) 

which automatically satisfies the boundary 
condition (5b), one finds that the eigenvalues A, 
and the eigenfunctions P,(q) must be solutions 
of the following ordinary differential equation : 

(8) 

with 

P;(o) = 0 and P”(1) = 0 (9) 

where the prime designates derivative with 
respect to rl and 

Furthermore, to fulfil the initial conditions of 
(Sa), the coefficients of series expansion, A,, in 
equation (7) must be determined such that 

2 &P”(V) = - til - $). (11) 
n=l 

It can be readily shown from equations (8) and 
(9) that P,(q) are expressible in terms of the Bessel 
functions J&q), and from equation (11) that 

where &a., n = 1, 2, 3,. are the positive roots 
of Jo(a) = 0. 

The solution to equation (6), satisfying equa- 
tion (5) is thus 

$*(P, d = - 
m 2 J&A c( 1 ocnj J0exp(--j.h4 (12) 

1 n 

n=l 

‘) 

FIG. 1. Concentration profiles at r = 0.01 for a slug flow. 
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(1)Pe = 1 
Table 1. Eigenvalues and the related constants 

n C” 

1 1041101 1.429814 1.431780 -0.281627 - 1.177306 - 1.140826 0.210193 
2 1.624152 2.277574 2.275163 0040683 1.823589 1.817240 -0.065551 
3 2050285 2.885039 2.883344 -0.012850 - 2.304607 -2.301927 0.032992 
4 2402518 3.385464 3.384265 OQO5761 2.702752 2.701209 -0.020511 
5 2.709521 3.821061 3.820166 -0003131 - 3.049794 - 3.048765 0.014285 
6 2.985196 4.211932 4.211234 0001917 3.361381 3.360635 -0.010672 
7 3.237523 4.569539 4.568976 - OQO1272 - 3.646533 - 3.645964 0.008359 
8 3.471581 4.901154 4.900687 OQOO894 3.911001 3.910554 - 0006775 
9 3.690841 5.211732 5.211335 - 0000656 -4.158711 -4.158360 0.005635 

10 3.897796 5.504828 5.504485 0000498 4.392488 4.392216 - 0004782 
11 4.094310 5.783100 5.782798 - 0000389 -4.614439 -4.614245 OW4125 
12 4.281819 6.048590 6.048320 owO31o 4.826187 4.826076 - 0003605 
13 4.446145 6.302915 6.302668 -0QOO253 - 5.029009 - 5.028998 0.003186 
14 4.634140 6.547373 6.547144 OQOO208 5.223934 5.224047 - 0002842 
15 4.800618 6.783032 6.782816 -0.000175 - 5.411799 - 5.412076 0.002556 
16 4.961514 7.010780 7.010570 OWO148 5.593298 5.593792 -0002315 
17 5.117355 7.231363 7.231155 -0.000127 - 5.769010 - 5.769792 0002109 
18 5.268590 7445419 7445208 0aOO109 5.939421 5.940584 -0.001932 
19 5.415603 7.653496 7.653277 - 0.000096 - 6.104940 - 6.106605 -0001779 
20 5.558731 7.856070 7.855838 0.000 083 6.265915 6.268236 -0001644 

(2) Pe = 5 

n 1.” 

1 1.910689 2.385304 2.501045 - 0.287856 
2 3.320330 4.510940 4.531754 0.049995 
3 4.328262 5.976526 5.981138 -0.017237 
4 5.149661 7.157913 7.158903 0.007656 
5 5.859426 8.174395 8.174344 -0.004019 
6 6.493120 9.079841 9.079455 0.002376 
7 7.070791 9.903999 9.903509 -0001531 
8 7605020 10.66535 lo.664844 0.001052 
9 8.104301 11.37631 11.375817 - 0000758 

10 8.574686 1204568 12045211 0000567 
11 9.020663 12.67998 12.679531 - 0000437 
12 9445668 13.28417 13.283751 0000345 
13 9.852401 13.86218 13.861773 - 0000278 
14 10.24303 14.41711 14.416724 OQOO228 
15 10.61932 14.95154 14.951157 -0000190 
16 lo.98275 1546757 15.467187 oaOO159 
17 11.33455 15.96698 15.966589 -0000137 
18 11.67577 16.45128 16.450871 0.000116 
19 1200731 16.92176 16.921326 -0000102 
20 12.32994 17.37955 17.379074 0oOOO88 

B. b%l.,,. C” R;(l) PWl,s,. 

- 1.061607 -0.851135 
1649596 1609615 

-2.143837 -2.132572 
2.558767 2.554120 

- 2.919289 - 2.916826 
3.241436 3.239912 

- 3.535032 - 3.533992 
3.806416 3.805661 

- 4.059914 - 4.059349 
4.298622 4.298197 

-4.524838 -4.524531 
4.740318 4.740121 

- 4.946445 - 4.946369 
5.144320 5.144382 

- 5.334842 - 5.335080 
5.518748 5.519212 

- 5.696655 - 5.697414 
5.869077 5.870224 

- 6.036449 -6.038103 
6.199139 6.201454 

- 

0.200744 
- 0.074750 

0.038662 
- 0.023639 

0.016127 
-0.011841 

oaO9149 
-0QO7336 

0@06050 
- 0005098 

0.004372 
- OQO3803 

om3347 
- OQQ2975 

0002668 
- 0002409 

0002190 
- 0002002 

0001840 
- 0001698 
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(3) Pe = 100 

n ;., P” b%l..ym. L” R,(l) 

1 2.201009 2.59693 1 
2 4.218890 5.546884 
3 5704213 7.713849 
4 6.911455 9.459211 
5 7.949455 10.95320 
6 8.872196 12.27805 
I 9.710421 13.47957 
8 10.48343 14.58622 
9 11.20422 15.61707 

10 11.88201 16.58561 
11 12.52362 17.50176 
12 13.13424 18.37312 
13 13.71794 19.20560 
14 14.27797 2000393 
15 14.81698 20.77197 
16 15.33716 21.51290 
17 15.84036 22.22939 
18 16.32812 22.92369 
19 16.80179 23.59773 
20 17.26250 24.253 19 

(4) Pr = 10 

n A m1asym. r 

C” R:(l) [W&m. 1 PI& do 

1 2.402055 2.703129 2.997341 -0.286540 - 1.014490 -0.215678 0196814 
2 5.487135 6.65757 6.967179 0.049769 1.352788 0.531197 -0.082914 
3 8.530468 lo.58267 10.877234 -0.019945 - 1.587621 -0.844374 0.052314 
4 11.49190 14.43472 14.701964 0.010782 1.786051 1.151723 -@037951 
5 14.35144 18.18979 18.423251 - 0~006804 - 1.971889 - 1.451335 0.029484 
6 17.09886 21.83222 22.029869 0.004712 2.156333 1.741958 -0.023810 
7 19.73091 25.35315 25.516311 - 0.003465 - 2.344676 - 2.022888 0.019687 
8 22.24912 28.74932 28.881434 0.002650 2.538816 2.293863 -0.016525 
9 24.65801 32.02164 32.127179 - 0.002083 - 2.738571 -2.554957 0.014013 

10 26.96373 35.17390 35.257511 0.001665 2.942621 2.806470 -0~011971 
11 29.17319 38.21163 38.277614 -0.001349 - 3.149157 - 3.048846 0.010287 
12 3 1.29342 41.14123 41.193308 0~001100 3.356319 3.282594 - 0008886 
13 33.33126 43.96944 44.010644 - 0QO0905 - 3.562490 - 3.508253 oQO7715 
14 35.29316 46.70290 46.735647 0000747 3.766375 3.727149 -COO6733 
15 37.18507 49.34799 49.374148 - 0000621 - 3.967045 - 3.937399 0.005906 
16 39.01244 51.91070 51.931691 0.0005 16 4.163881 4.141874 - 0.005208 
17 40.78023 54.39659 54.413483 - oQOO434 -4.356514 -4.340219 0.004618 
18 42.49291 56.81076 56.824372 0.000362 4.544751 4.532842 -0.004116 
19 44.15453 59.15793 59.168854 - 0~000309 - 4.728537 -4.720119 0.003688 
20 45.76873 6144239 61.451077 oQOO259 4.90789 1 4.902393 -0.003321 
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Table lmm continued 

2.805 146 
5.622804 
7.739680 
9.469257 

10.957957 
12.280100 
13.480528 
14.586628 
15.617177 
16.585553 
17.501590 
18.372882 
19.205317 
20.003617 
2@771627 
21.512525 
22.228973 
22.923227 
23.597217 
24.252610 

_~_~ -. 

-0.288188 - 1.030610 
0.051765 1.521785 

-0.019739 - 1.985494 
0.009348 2.401592 

- 0~005003 - 2.770527 
Of102942 3.101652 

-0.001867 - 3403357 
0.001260 3.681813 

- 0.000893 - 3.941458 
0.000658 4.185536 

-0~000501 -4.416480 
0.00039 1 4.636159 

-Of1OO312 - 4.846040 
0.000254 5047297 

-0~000210 - 5.240884 
0~000175 5.427586 

-0~000149 - 5608055 
@000126 5.782835 

- 0~000110 ~~ 5.952389 
omOO95 6.117103 

[RXl)las,rn 

- 0.655239 
1.399552 

- 1.946305 
2.386683 

- 2.763636 
3.097914 

- 3.401073 
3.680295 

- 3.940392 
4.184768 

-4.415925 
4.635780 

- 4.845826 
5.047255 

- 5.241042 
5.427988 

- 5608768 
5.783949 

-5~954018 
6.119399 

0.198164 
- 0.079184 

0.043569 
-0.027088 

0.018380 
-0.013335 

0.010177 
-0W8071 

0.006594 
-0005513 

OQO4696 
- OQO406 1 

0003557 
-0.003149 

OQO28 13 
- 0002532 

0.002295 
- 0.002093 

0~001919 
-0.001767 
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Table l-continued 

(5) Pr = m (No axial diffusion) 

n 1” B. C” R:(l) 

1 2.404825 2.704364 - 0.286463 - 1~014300 
2 5.520078 6.67903 1 0.049572 1.349241 
3 8.653727 10.67338 -0.019679 - 1.572319 
4 11.791534 14.67108 0.010483 1.746004 
5 14.930917 18.66987 - OGO6498 - 1.890852 
6 18.071063 22.66915 0.004419 2.016461 
7 21.211636 26.66868 -0C03199 -2.128157 
8 24.352471 30.66835 OQO2422 2.229232 
9 27.493479 34.66813 -OT)O1898 -2.321909 

10 30.634606 38.66798 COO1526 2.407722 
11 33.775820 42.66789 -0.001255 -2.487811 
12 36.917098 46.66786 0~001049 2.563038 
13 40.058425 50.66788 - OX00892 - 2.634056 
14 43.199791 54.66797 0000764 2.701408 
15 46.341188 58.66814 - O+IOO666 -2.765517 
16 49.482609 62.66839 0000581 2.826715 
17 52.62405 1 66.66873 -0mO517 - 2.885277 
18 55.765510 70.66920 0.000456 2.941461 
19 58.906983 74.66979 -0QOO414 -2.995421 
20 62.048469 78.67054 OGOO367 3.047334 

C’vR. dv 
b 

0.196798 
-0.082971 

0.052554 
- 0.038465 

0.030337 
- 0.025047 

0.021330 
-0.018574 

0.016449 
-0.014761 

0.013387 
-0.012247 

0.011286 
-0.010465 

oGO9755 
-0.009135 

OGO8589 
-0.008104 

OTIO7671 
- 0.00728 1 

___~ 

and the complete concentration solution is 
Cc 

J&A 
x -exp(- J,2p) 

J&n) (13) 

where A,, is related to an, the roots of J,,(a,) = 0, 
through equation (10). It should be pointed out 
that equation (13) differs from that of the case 
of no axial diffusion only in that 31, are now the 
eigenvalues which are dependent on the PC&t 
number. As the P&let number approaches 
infinity, however, 1, + a, and equation (13) 
reverts to the corresponding equation for the 
case of no axial diffusion [l]. 

The first twenty eigenvalues, A,,, are tabulated 
in Table 1 for PCclet numbers of 1,5, 10, 100 and 
co. It is noted that at small PC&t numbers the 
consecutive higher eigenvalues do not vary 
appreciably in magnitude. This means that in 
the series summation, as in equation (13), the 
series converges slowly at smaller P&cl& num- 
bers, necessitating an increase in the number of 

eigenvalues to be included in the computation. 
The concentration profiles calculated from 
equation (13) at 5 = 0.01 (11 = 0.02) are shown 

- Ps ‘03 (no OXlDl 
_---a + :10 diffusion) 

.-- pe=, 

OS 
2<=005 

0 02 04 06 08 IO 
9 

FIG. 2. Variation of entrance-region concentration profiles 
for a slug flow. 
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in Fig. 1 for several PC&t numbers. It is seen 
that the effect of axial diffusion is a greater 
decrease in the mass concentration, the smaller 
the PdclCt number. Variations of the entrance- 
region concentration profiles are illustrated in 
Fig. 2 for Pe = 1, 10 and co. It is observed that 
for Pe > 1, the concentration profiles at t 2 1 
already approach the fully established profile 
given by equation (3). 

Solution for parabolic-velocity profile 
For the Poiseuille pipe flow, A, = 2(1 - s2) 

and A, = 0 and equation (4) becomes 

all/* I a a** 
(1 - V’)~ = 6% ?q ( > 

1 2 a2ip 
+ Pe a52 (I- (14) 

to be satisfied by the same boundary conditions 
depicted by equation (5). Again, one seeks solu- 
tion in the same form as that for the case of no 
axial diffusion, i.e. 

$*(5, q) = n$l CJW) exp (-Pi<) . (15) 

Substitution of the above into equations (5) and 
(14) yields 

R,+;R;+p; 

with x [(I-tii)+(#R.=O (16) 

R;(O) = 0 and R,,(l) = 0 

and the following relationship 

(17) 

“g CP”(V) = - 31 - v12) (18) 

necessary for the determination of the coefficients 
of series expansion, C, 

Because Singh’s method [6] does not readily 
render higher eigenvalues which are needed 
especially for small PC&t numbers, Hsu’s 
method is employed here. Following Hsu [5], 
the eigenvalues, &, and eigenfunctions, R,(q), are 
determined directly by solving equation (16) 
with the aid of a CDC-6600 computer using the 
Runge-Kutta scheme. For each preassigned 
value of PC&t number, the eigenvalues are 
determined by trial and error procedure so that 
equations (16) and (17) are simultaneously 
satisfied. The first twenty values of fl, thus 
determined are tabulated in Table 1 for PtclCt 
number of 1, 5, 10, 100 and CQ. The eigenvalues 
are seen to increase with increasing P&cl& 
numbers and approach asymptotically those for 
the case of no axial diffusion. It is again noted 
that at small PC&t numbers the consecutive 
higher eigenvalues do not vary appreciably in 
magnitude. The quantity R;(l) is related to the 
mass flux at the wall and occurs frequently in 
subsequent analyses and is thus included in 
Table 1. 

It is noted that the eigenfunctions, R,(q), are 
not mutually orthogonal and, as such, the 
eigenfunction expansion technique widely used 
for the “Sturm-Liouville” system cannot be 
utilized here in evaluating the coefficients C,. 
However, multiplying both sides of equation (18) 
by qR,[g(q, /I) - g(q, a.)], integrating fromO to 1, 
and utilizing 1’Hospital’s rule, the series co- 
efficients, C,, can be found to be 
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j-[(l - ‘12) + 2($)2]‘iR:dq 
0 

where gh P,) = Pz [(l - v2) + WW2] and p is considered as a parameter. Utilizing the relation- 

ship 
1 

(1_1’)+~]tlR,R,,dr/=O (mfn) 

obtainable.from equation ( 16) the infinite series in equation (19) can be simplified, and thus 

Let 
Equation (22) represents a set of infinite simul- 
taneous equations which can then be solved 
for the unknowns, C,. In this study, the infinite 
series was truncated at m = 20, which was found 

!,,‘,.+2~~~2,:.‘:1_:“^*-z 

to give satisfactory converging solutions. It was 
further shown that by choosing m > 20 it does 

” not significantly improve the solutions. With 
m = 20, equation (22) gives rise to 20 simultane- 
ous equations which were solved by utilizing 
the “Gauss elimination technique” with a CDC- 

I 6600 computer. Thus, let 

equation (21) can be written as 

C,J,+ 2 r,,,C,=Z, (n=1,2,3 ,... ). (22) 
m=l 
m+n 1. I- 20.1 r20,2r20.3-~ J20 
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w = 

I 

Cl 
C2 
c3 

C 20 

11 
12 

) {B) = I1 

I 20 - a 1 w - $1 + w,/~e)21 
equation (22) can be written in a matrix form as 

W = W’ PI (23) 

where {Al-’ is the inverse of matrix {A\. The 

” 

G = 1 

x ~(1 - v2) 4, drl 

;‘b [Cl - ur2) + 2(P,/Pe)2] r] Rz dq 
< , \ I 

coefficients of series expansion, C,, are deter- 
mined from equation (23) and tabulated in 
Table 1. The calculated C, coefficients were 
actually substituted into equation (18) and it 
was ascertained that they indeed satisfy equation 
(18) very well. This can, in fact, be regarded as a 
proof of the mathematical correctness of the 
present solutions. 

It is noted that the diagonal elements of the 
matrix, {A}, are actually dominating. In other 
words, the off-diagonal elements, r,,,, are, in 

general, much smaller than J,. In fact, as 
Pe --t cn, r, m + 0. This indicates that the terms 
in the infinite series in equation (21) are small 
and may be neglected. Approximately, therefore, 
one can calculate C, from the following equation 
directly without solving a set of simultaneous 
equations. 

08 

3i=o-I 
4Ex0.5 

\Z 6<?1 
06 

04 

02 

.-.-. 

0 .-.-.-.__ 

FIG. 3. Variation of entrance-region concentration profiles 
for a Poiseuille pipe flow. 

(24) 

zo- 

16- 

0 

0 

I Pe = I 
2Pe =5 
3Pe =I0 
4 Pe =20 
5 Pi? =50 
6 Pe ?I00 

OZ- 

I 1 / / 7 
0 02 04 06 08 IO 

7 

FIG. 4. Concentration profiles at 5 = 0.01 for a Poiseuille 
pipe flow. 



MASS TRANSFER OF DECAYING PRODUCTS 1897 

Errors introduced by such an approximation are 
small (1: 2-3 per cent). 

The complete concentration solution, thus, 
is given by 

$(L a) = %I - V2) 

+ n$ CA(n) exp ( - PI 5). (25) 

Some typical profiles are shown in Fig. 3 for 
Pe = 1, 10 and co. It is observed that again in 
this case of Poiseuille pipe flow, the concentra- 
tion profiles at Lj > 1 for Pe > 1 almost coincide 
with that representing the case of no axial 
diffusion. The concentration profiles at < = 0.01 
are shown in Fig. 4 for several P&let numbers. 
It is interesting to observe that, in comparison 
with the corresponding profiles based on the 
slug flow (Fig. 2) the concentrations are greatly 
reduced in the central core, apparently due to 
the accelerated centralcore flow in the Poiseuille 
pipe flow. 

The trial and error procedure used in deter- 
mining the eigenvalues /I, from equations (16) 
and (17) can be facilitated by finding the 
asymptotic expression for the eigenvalues. 
Following Sellars et al. [7] and taking into 
consideration the effect of axial diffusion, the 
eigenfunctions R,(q), for 0 < r) < 1 and suffi- 
ciently large /I., may be given by the so-called 
WKB approximations : 

x sin- 1 
[ 

Jcl + 1sJPe)2] 11 = n(n - a). (27) 

The roots of equation (27) for an arbitrarily 
preassigned value of PC&t number represent, 
therefore, the desired asymptotic eigenvalues 
for the particular P&let number. These values 
are included in Table 1 for comparison with the 
exact values obtained by directly solving equa- 
tions (16) and (17). It is surprising to note that 
whereas the asymptotic expression is supposed 
to be valid for very large fl, in actuality values of 
n as small as 1 for Pe = 1, 2 for Pe = 5, 3 for 
Pe = 10, 4 for Pe = 20, 5 for Pe = 30, 6 for 
Pe = 50, and 8 for Pe = 100 give errors of /3 
only within 0.5 per cent of the actual values. 

From equation (26) the asymptotic expression 
for the first derivative of the eigenfunction at 
the wall can be found to be 

R;(l) = (-1)” = 1,2, . . .). (28) 

The asymptotic values of R;(l), denoted by 

CR:(I)]asym., are also tabulated in Table 1 for 
comparison with the actual values. 

PHYSICAL ANALYSES 

The aforementioned mathematical analyses 
give the local concentration distributions of the 
radio-elements within the cylindrical tube and, 

COS #. 5 Cl - C2 + (P,/Pe)2]f d[ - n/4} 
R,(?) = ______~!_____ 

wM)+ r1 - u2 + (b”/W21’ 
~0s {(P,/2) v&l - v2 + WW21 + UW) Cl + WP421 sin- ’ M/Cl + WWI) - =-- ___-- -_--___ 01. 

(7&r/W Cl - v2 + UWW21* 
(26) 

To satisfy the boundary condition R,(l) = 0, thus, provide the basis for such physical 

it is required that analyses as the local bulk concentration, the 
local Sherwood number, and the parameter F,(l) 
used in the experimental determination of the 
coefficient of diffusion [1,2]. 
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FIG. 5. Variation of bulk concentration in the entrance-region of a slug flow. 

FIG. 6. Variation of bulk concentration in the entrance-region of a Poiseuille pipe flow. 
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4Pe :50 
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FIG. 7. Variations of Sherwood number in the entrance-region of a slug Row. 
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2Pe = IO 
3Pe=20 
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6Pe r 100 
7Pe =mlno OXIO~ diffusconl 

FIG. 8. Variations of Sherwood number in the entrance-region of a Poiseuille pipe flow. 
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Local bulk concentration and Sherwood number 
Defining the local bulk concentration as 

Cb = 

i v,cr dr 

l v,r dr 

we get, 

It can be readily shown that for the uniform- 
velocity flow, 

+ll(5) = 
a; 4 c 2 [l - exp (- &)I (30a) 

n 
II= 1 

density, I, at the wall is 

Defining a mass-transfer coefficient, h, such 
that ho = I/c,, and invoking the above expres- 
sion for the mass flux density, one obtains the 
local Sherwood number as 

(31) 
q= 1 

which, for the uniform-velocity flow, 

i- , 

Sh = 8-/_~~~~~~~~~~~~~~i~_/ (324 

and, for the parabolic-velocity flow, is 

: 

1 - 2 f CJW)ew(-P,Z4) 
Sh = 6 _-___-_m__~___~___~~~_------_----i.-----_---_----.-- 

1 - 24 c G [(W2 KU) + WW2 j MC, dd exp ( -Pf 8 
n=l 0 i 

Wb) 

and that for the parabolic-velocity flow, 

tib(<) = $ - 4z C.[($)%(l) 

+ (&r ]&,dy~ exp(-Bit). (30b) 
0 

The first twenty values of j yR, dq are also 

tabulated in Table 1 for the0 PC&t numbers 
considered herein. The bulk concentrations 
depicted by equations (30a) and (30b) are 
shown, respectively, in Figs. 5 and 6. As expected 
the local bulk concentration decreases with 
decreasing PC&t numbers. It is again observed 
that in both cases the fully established bulk 
concentration is approached at r > 1 for 
Pe > 1. 

By the Ficks’ law of diffusion, the mass flux 

The local Sherwood numbers for both the 
uniform-velocity and parabolic-velocity profiles 
are, respectively, shown in Figs. 7 and 8 for 
various P&let numbers. It is seen that in both 
cases the Sherwood number increases with 
increasing P&let numbers at small 5 values ; 
namely, 5 < 0.02 for the uniform-velocity flow, 
and < < 004 for the parabolic-velocity flow. 
At larger 5 values, however, the Sherwood 
number for a smaller P&let number is slightly 
higher than that for a larger Ptcldt number. 
As < -+ z, Sh -+ 8 for the slug flow and Sh + 6 
for the Poiseuille pipe flow, independent of the 
P&let numbers. 

The parameters F,(c) and F:(k) 
The parameter F/(t), defined as the rate 

of the total particle flux over a cross-section at 
distance x from the tube inlet to the rate of 
formation of the radioelements in the same 
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volume element of the tube, i.e. 

2n: y v,cr dr 

FJ(5) = O 
nrixq 

l1 
=- 5 

s 
NL v) $(k v) rl dv (33) 

0 

has been of great interest to experimenters in 
their laboratory determination of the coefficients 
of diffusion of disintegration products of an 
inert gas. The determination of the coefficient 
of diffusion of radium-A particles resulting 
from the disintegration of radon in air, carried 
out by Thomas et al. [2], is one such example. 

The parameter F/(t) can be found for the 
uniform-velocity flow as : 

00 

Fj43 = ; cc > $i [1 - exp C-&4] (34a) 
n 

?I=1 

and for the parabolic-velocity flow as : 

The F,(r) values calculated from equations (34a) 
and (34b) are shown, respectively, in Figs. 9 and 
10 for various PC&t numbers. It is seen that 
F,(t) values decrease with decreasing P&let 
numbers. It is further observed that, in both the 
slug and Poiseuille pipe flows, the curve for 
Pe = 100 deviates from that for Pe = cc at 
5 < 0.02, more at smaller c values. This indicates 
that for Pe < 100, the effect of axial diffusion 
is still significant for < c 0.02. In fact from 
Figs. 9 and 10, it is observed that the effect of 
axial diffusion is negligible only for Pe = 100 
and 5 > 0.02; Pe = 50 and { > 0.1; Pe = 10 
and 5 > 0.5 ; and Pe = 1 and < > 5 (not shown). 
Recalling that < = x/(ro. Pe), it can thus be 

concluded that the effect of axial diffusion may 
be neglected at an axial distance from the tube 
inlet greater than two and a half times that of 
the tube diameter for 1 < Pe < 100. 

In defining the parameter F,(t), the local 
axial particle flux has been taken to be the 
convective flux given by the product of the local 
concentration and local fluid velocity, i.e. 
f, = v,c. TG account for axial diffusive flux 
in the presence of axial diffusion, the axial 
particle flux should become fk = v,c - D(&/ax). 
One can thus define a new parameter F?(t) as 

2n i[v,c - D(&/ax)lr dr 

F?(5)= O 
mgxq 

II 

s[ 

2 a* =- __- 
r Axe - (Pe)2 a[ 1 v dv (35) 

0 

which reverts to F,-(t) as Pe + co. With this 
redefinition, one obtains 

x exp(--&4 (364 

for the uniform-velocity flow, and 

F:(5)= ;{+2 - 2~+(I) 

x exp (-Et) 
1 

Mb) 

for the parabolic-velocity flow. 
The Ff(5) values calculated from equations 

(36a) and (36b) are, respectively, shown in Fig. 11 
and 12. Because the particle flux due to axial 
diffusion is in the negative xdirection in the 
entrance-region for finite values of P&let 
numbers (see Figs. 2 and 3) the F:(t) values 
decrease markedly with decreasing P&cl& 
numbers. At small 5 values, Ff(<) values become 
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FIG. 11. Variation of F;(r) in the entrance-region of a slug flow. 
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FIG. 12. Variation of Ff({) in the entrance-region of a Poiseuille pipe flow. 
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negative, indicating the upstream-bound axial 
diffusion flux [i.e. D(&/ax)] prevails over the 
downstream-bound convective flux (i.e. u,c). 
The negative F;(t) values are not shown in 
Fig. 11 and 12 since they do not represent 
physically meaningful data. 

It should be borne in mind, therefore, that in 
using the F,(Ovalues. defined by equation (33), 
in the experimental determination of the co- 
efficient of diffusion, one has neglected the 
axial diffusive flux which becomes more import- 
ant as 5 values and Pe get smaller. The F,(t) 
values thus obtained tend to be higher than the 
actual values whenever axial diffusion plays a 
role. 
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TRANSFERT DE MASSE DE PRODUITS EN D&OMPOSITlON AVEC 
DIFFUSION AXIALE DANS DES TUBES CYLINDRIQIJES 

R&me- Le problkme du transfert de masse stationnaire avec diffusion axiale de produits en dt-composition 
rksultat de la dGnt&gration d’un gaz inerte dans un tube cst consid& pour un Ccoulement en bloc et 
du type Poiseuille. Les produits de d&sintCgration sont filtrb vers l’exttrieur du tube de gaz inerte le long 
du tube cylindrique. Les radio-tltments diffusent axiallement et radialement jusqu’aux parois du tube 
oti ils se d&composent en d’autrcs radio-Gments. 

A cause de la dkpendance du nombre de P&cl&t, Its effets de la diffusion axiale sur la distribution de 
concentration. le nombre de Sherwood local, et les valeurs de F(t) sont btudits pour les nombres de P&l& 
1. 5. 10, 20, 30, 50 et %. 

Pour I’tcoulement du type Poiseuille, les expressions asymptotiques pour les valeurs proprcs ct R,‘(I) 
sont ainsi obtenues 

MASSLNTRANSPORT ZERFALLENDER PRODUKTE BE1 AXlALER DIFFUSlON 1N 
ZYLINDRISCHEN ROHREN 

Zusammenfassung--Das Problen des Massentransportes im stationiren Zustand bei axialer Diffusion 
zerfallender Produte, wie es sich infolge der Zersetzung eines Inertgases ergibt, wird fiir eine schleichende 
Rohrstriimung und fiir eine Poiseuillesche RohrstrGmung untersucht. Die Zerfallsprodukte werden llngs 
der zylindrischen RGhre herausgefiltert. Die radioaktiven Elemente diffundieren axial und radial zu den 
RohrwPnden und zerfallen dort in andere radioaktive Elemente. Aus der Abhlngigkeit von der Pkclbt- 
zahl kann die Wirkung der axialen Diffusion auf die Konzentrationsverteilung, auf die iirtliche Sherwood- 
zahl und auf die F(c)-Werte fiir PC&t-zahlen von 1, 5, 10, 20, 30, 50 und co ermittelt werden. Fiir laminare 

RohrstrGmung werden such asymptotische Ausdriicke fiir die Eigenwerte und fiir R;(l) erhalten. 
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