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Abstract—The problem of steady-state mass transfer with axial diffusion of decaying products resuiting
from the disintegration of an inert gas is considered for a slug and a Poiseuille pipe flow. The products of
disintegration are filtered out at the tube inlet, but are again generated by radioactive decay of a flowing
inert gas along the cylindrical tube. The radio-elements diffuse axially and radially to the tube walls where
they decay into other radio-elements.

Because of the Péclét number dependence, the effects of the axial diffusion on the concentration distribu-

tion, the local Sherwood number, and the F(&) values are studied for Péclét numbers of 1, 5, 10, 20, 30,

Fy &y

50, 100 and .
obtained.
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For the Poiseuille pipe flow, asymptotic expressions for the eigenvalues and the eigenfunctions are also

defined as 27 jo(vxc — Déc/ox)
0

x rdr/arixq;

mass flux density;

Péclét number of diffusion, defined
as ReSc = (2Vry/D);

eigenfunctions for equations (8) and
9);

rate of formation of the decaying
product per unit volume of gas;
radial coordinate distance;

inner radius of the tube;
eigenfunctions for equations (16)
and (17);
Sherwood
hp(2ro)/D;
axial and radial velocity components,
respectively;

mean flow velocity;

axial coordinate distance;

number, defined as
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%, eigenvalues of equations (8) and (9),
such that o2 = A2[1 + (24,/Pe)?];

B, eigenvalues of equations (16) and
(17);

Ao eigenvalues of equations (8) and (9);

1, defined as r/ry;

&, defined as x/(roReSc);

U, defined as 2x/(roReSc) = 2¢&;

¥, dimensionless mass concentration,
defined as Dc/gr3;

y*, defined as Dc*/qri;

Vs, defined as Dc,/qr3;

A, A, dimensionless axial and radial

velocity components, defined as v /V
and v,/V, respectively.

INTRODUCTION

THE PROBLEM of steady-state mass diffusion
of a constituent in a generating but nonreacting
binary gas mixture flowing through a cylindrical
tube, assuming azimuthal symmetry and
constant coefficient of diffusion can be written
mathematically as [1]:

v §£+v,a_c
*ox  "or

10 / ée
‘D[;a(ra)’“

The diffusion of radium-A radio-elements result-
ing from the disintegration of radon gas in air
flowing through a cylindrical tube [1, 2], for
instance, is depicted by such an equation. In this
situation, v, and v, are, respectively, the axial
and radial velocity components of the gas;
¢, the mass concentration of the radio-elements;
D, their coefficient of diffusion; and g, the rate
of formation of these radio-elements per unit
volume of the following gas.

Since equation (1) is mathematically analo-
gous to that of heat transfer in a cylindrical
tube where g then denotes the rate of heat
generation within the fluid, it is apparent that
any solution of equation (1) is directly applicable

2
g_c] + g (1)

ox?
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to the corresponding heat transfer problem
involving similar boundary conditions.

The usual assumptions made in the solution
of equation (1) are those of negligible secondary
flows and negligible diffusion in the axial
direction, such that the terms involving v, and
0%c/0x* can be eliminated from the equation.
Such a problem has been studied by Tan [1] in
an earlier paper on diffusion involving a uniform-
velocity, a parabolic-velocity, and a Langhaar-
velocity profile.

The assumption of negligible secondary flows,
ie. v, = 0, is probably justifiable for flows in
relatively long tubes since its significance
diminishes rapidly away from the tube inlet. In
his analysis of heat transfer in the entrance
region of cylindrical tubes, Kays [3] showed
that the effect of the v, term is quite small com-
pared to the term on the left-hand side of
equation (1) for £ > 0-02. The other assumption
of negligible axial diffusion is not always
justifiable, however, particularly for fluids with
high diffusivities flowing at low mean velocities.
Based on the simplifying assumption of a
uniform-velocity profile, Schneider [4] has
analyzed the effect of axial conduction on
entrance-region heat transfer and concluded
that it is quite appreciable if the Péclét number
is <100. This conclusion is later confirmed by
Hsu [5] in his exact mathematical analysis on
entrance-region heat transfer for a Poiseuille
pipe flow.

The need for neglecting axial diffusion in the
traditional analysis is partly due to the fact
that its inclusion in the diffusion equation will
make the latter no longer amenable to known
feasible mathematical manipulations. A basic
mathematical difficulty arises since the differ-
ential equation then reduces to a Whittaker-
type differential equation [4] for which the
eigenfunctions are not orthogonal. This consti-
tutes a major drawback in the computation of
the coefficients of series expansion. To remedy
this difficulty, Singh [6] expressed the eigen-
functions as an infinite series of Bessel functions
of order zero which are orthogonal over the
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finite interval of integration. The differential
equation for the problem is then reduced to an
infinite set of linear simultaneous algebraic
equations for the coefficients of the series. The
technique, however, does not readily render
higher eigenvalues, which are needed especially
for small Péclét numbers. Hsu [ 5] has proposed
a relatively simple mathematical scheme which,
together with the aid of a high-speed digital
computer, gives the pertinent eigenvalues and
eigenfunctions. Moreover, this technique does
not present any undue complication in deter-
mining the higher eigenvalues.

In this analysis of mass transfer with axial
diffusion, a slug flow (uniform-velocity profile)
and a Poiseuille pipe flow (parabolic-velocity
profile) will be considered. For the latter case,
the method used by Hsu [5] will be employed.
Because of the Péclét number dependence,
determination of the eigenvalues, eigenfunctions,
and coefficients of series expansion will be given
for n=1-20 for arbitrarily selected Péclét
numbers of 1, 5, 10, 20, 30, 50, 100 and oc. In
addition, asymptotic expressions for the eigen-
values for the corresponding Péclét numbers will
be given.

MATHEMATICAL ANALYSIS

In brief, the diffusion problem of decaying
products of an inert gas under consideration is
to seek solution to equation (1) under the follow-
ing boundary conditions:

¢0,r)=0 (2a)
o(oo, 1) = ¢ (2b)
Qf (x,0)=0 (2¢)
ar
c(x,rg) = 0. 2d)

The first boundary condition is a constraint of
an experimental technique reported in [2] of
placing a high efficiency filter at the tube inlet
to remove any particulate matter; the second is
as a consequence of the requirement that, for
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large x, the solution should revert to the fully
established concentration profile which has been
given in [1] as

C —Zr—% 1_."_2‘
774D r:)

the third is the symmetry requirement at the
center of the tube; and the last indicates com-
plete annihilation of the radio-elements as they
come in contact with the tube walls (see footnote
on p. 473 of [1]).

To find the concentration solution satisfying
equations (1) and (2), it is convenient to define a
new concentration variable, c¢* =c - c,.
Further, by introducing the following dimension-
less parameters:

3)

Dc Dc*
V="3, Yr=—s
ar3 arg
v v
A, =23, A, =—
. % . %
r x
11 = —, =
ro roRe. Sc

where r,, is the inner radius of the tube; V is the
mean fluid velocity; and Re and Sc are, respec-
tively, the Reynolds number and the Schmidt
number; it can be readily shown that equations
(1) and (2) become

op* oy*
4.2+ 4 Pe A(—g’n— - in)

* 2 22,1 %
R
and
Y*0,m) = — (1 — 1% (5a)
Y*(o,n) =0 (5b)
L eo=0 (50)
y*¢ 1) =0 (5d)
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The Péclét number of diffusion has been
defined as Pe = Re. Sc.

In this study, solutions are sought to satisfy
equations (4) and (5) for a slug flow (uniform-
velocity profile) and a Poiseuille pipe flow
(parabolic-velocity profile). The required solu-
tions will be expressed in the same form as that
for the case of no axial diffusion. The latter
may then be regarded as a special case of the
more general problem in which axial diffusion
is taken into account.

Solution for uniform-velocity profile

With the simplifying assumption of a uniform-
velocity profile as in slug flow, ie. A, =1 and
A, = 0, and letting x4 = 2¢, equation (4) reduces

to

oy* 10 [ oy~ 2\ o4+

2n ~non ("W) ¥ <ﬁ> o ©
Assuming the solution in the same form as that
for the case of no axial diffusion [1]:

Pn = 3 AP P (=20 ()

which automatically satisfies the boundary
condition (5b), one finds that the eigenvalues 4,
and the eigenfunctions P,(n) must be solutions
of the following ordinary differential equation:

1
P, + r—,P;, + 2P, =0 (8)

with

P0)=0 and P(1)=0 9

where the prime designates derivative with
respect to n and

' 22.\?
2 _ g2 n

Furthermore, to fulfil the initial conditions of
(5a), the coefficients of series expansion, 4,, in
equation (7) must be determined such that

(10)

S AP =Ml —n). (D)

n=1
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It can be readily shown from equations (8) and
(9) that P,(r) are expressible in terms of the Bessel
functions Jo(4,n), and from equation (11) that
21
" 0‘3 ‘]l(an)

where +a,, n = 1,2, 3,... are the positive roots
of Jo(a) = 0.

The solution to equation (6), satisfying equa-
tion (5), is thus

2\ Jofa,
vrn == ) (Z) e exp sz 12

n=1

¥x10?

L | L 1 I 1 L 1 i
0 02 04 06 08 10

n
F1G. 1. Concentration profiles at ¢ = 001 for a slug flow.
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Table 1. Eigenvalues and the related constants
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(1) Pe =1
1
n 2 By [BJusm. G, B[R0l [nRydn
1 1041101 1-429814 1-431780 —0-281627 —1:177306 -1-140826 0210193
2 1-624152 2:277574 2275163 0-040683 1-823589 1-817240 —0:065551
3 2:050285 2-885039 2-883344 —0:012850 —2:304607 —2:301927 0032992
4 2-402518 3385464 3384265 0-005761 2-702752 2701209 —0020511
5 2709521 3821061 3820166 ~0:003131 —3-049794 —3:048765 0014285
6 2:985196 4211932 4211234 0001917 3361381 3360635 -0010672
7 3237523 4-569539 4-568976 —0:001272 —3-646533 —3-645964 0-008359
8 3471581 4901154 4-900687 0-000894 3911001 3910554 —0-006775
9 3-690841 5211732 5211335 —0-000656 —4-158711 —4-158360 0-005635
10 3-897796 5-504828 5-504485 0-000498 4-392488 4392216 —0-004782
11 4094310 5783100 5782798 —0-000389 —4-614439 —4-614245 0004125
12 4281819 6-048590 6048320 0-000310 4-826187 4-826076 —0:003605
13 4-446145 6302915 6-302668 —0-000253 — 5029009 —5:028998 0-003186
14 4634140 6-547373 6-547144 0-000208 5223934 5224047 —0-002842
15 4-800618 6-783032 6782816 —0000175 - 5411799 —5-412076 0-002556
16 4961514 7010780 7010570 0-000148 5593298 5593792 —0-002315
17 5117355 7231363 7231155 —0-000127 — 5769010 - 5769792 0-002109
18 5268590 7-445419 7-445208 0-000109 5939421 5940584 —0001932
19 5-415603 7653496 7653277 —0-000096 —6-104940 —6:106605 0001779
20 5-558731 7-856070 7-855838 0-000 083 6265915 6268236 —0-001644
(2)Pe=5
1
n )'n ﬂn [Bn]nsym. C)l Rl’l(l) [R;l(l)]lsyﬂ’k [_!. r’Rn d"
1 1910689 2:385304 2:501045 —0-287856 —1061607 —0-851135 0-200744
2 3320330 4-510940 4-531754 0049995 1649596 1-609615 —0-074750
3 4-328262 5976526 5981138 -0-017237 —2:143837 —2:132572 0-038662
4 5-149661 7-157913 7-158903 0007656 2:558767 2:554120 —0-023639
5 5859426 8174395 8:174344 —0:004019 —2919289 —2916826 0016127
6 6493120 9-079841 9079455 0002376 3241436 3239912 —0011841
7 7070791 9903999 9903509 —0-001531 - 3535032 —3-533992 0-009149
8 7-605020 10-66535 10-664844 0-001052 3-806416 3-805661 —0:007336
9 8:104301 11:37631 11-375817 —0:000758 —4059914 —4:059349 0-006050
10 8:574686 12:04568 12:045211 0-000567 4298622 4298197 —0-005098
11 9020663 1267998 12:679531 -0-000437 —4:524838 —4-524531 0004372
12 9-445668 1328417 13-283751 0-000345 4740318 4740121 —0-003803
13 9-852401 13-86218 13-861773 —0000278 —4-946445 —4-946369 0-003347
14 10-24303 1441711 14-416724 0-000228 5-144320 5-144382 —0002975
15 1061932 14-95154 14-951157 —0-000190 —5334842 —5:335080 0-002668
16 1098275 15-46757 15467187 0-000159 5-518748 5-519212 —0:002409
17 11-33455 1596698 15:966589 -0-000137 — 5696655 —5697414 0-002190
18 1167577 1645128 16:450871 0-000116 5:869077 5870224 —0-002002
19 12-:00731 1692176 16-921326 —0-000102 — 6036449 —6:038103 0-001840
20 12:32994 17-37955 17-379074 0000088 6199139 6-201454 —0001698
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Table 1-- continued

(3) Pe = 100

1
n Aon B [BeJasym. C. R, (1) [RAD)]aeym. {nR,dn

0
1 2201009 2596931 2805146 —0288188  —1030610  —0655239 0198164
2 4218890 5546884 5622804 0051765 1521785 1399552  —0079184
3 5704213 7713849 7739680 —0019739  —1985494  —1.946305 0043569
4 6911455 9-459211 9469257 0009348 21401592 2386683  —0027088
5 7:949455 1095320 10957957 ~0005003  —2770527  —2-763636 0018380
6 8872196 1227805 12280100 0002942 3101652 3097914  —0013335
7 9710421 13-47957 13480528 —0001867  —3403357  —3401073 0010177
8 1048343 1458622 14-586628 0001260 3-681813 3680295  —0:008071
9 1120422 1561707 15617177 —~0000893  —3941458  —3:940392 0:006594
10 1188201 16:58561 16585553 0000658 4185536 4184768  —0005513
11 12:52362 1750176 17501590 —0000501  —4416480  —4415925 0004696
12 1313424 1837312 18372882 0000391 4636159 4635780  —0:004061
13 1371794 1920560 19205317 —0000312  —4846040  —4:845826 0003557
14 1427797 20-00393 20003617 0000254 5047297 5047255  —0003149
15 1481698 2077197 20771627 —0000210  —5240884  —5241042 0002813
16 1533716 21-51290 21-512525 0000175 5427586 5427988  —0002532
17 1584036 2222939 22:228973 —0000149  —5608055  —5608768 0002295
18 1632812 22:92369 22923227 0000126 5782835 5783949  —0:002093
19 1680179 23-59773 23597217 —~0000110  —-5952389  —5954018 0001919
20 1726250 24-25319 24252610 0-000095 6117103 6119399  —0001767

(4) Pe = 10

1

n i Bx [Bulasym. G, R(1) [RAUD]asym. (j) R, dy

1 2402055 2703129 2:997341 —0-286540 —1:014490 —0-215678 0-196814
2 5487135 665757 6-967179 0-049769 1-352788 0-531197 —0-082914
3 8:530468 10-58267 10-877234 —0-019945 ~1-587621 —0-844374 0052314
4 11-49190 14-43472 14701964 0-010782 1-786051 1-151723 —0-037951
5 14-35144 18:18979 18423251 —0-006804 —1971889 —1-451335 0029484
6 17-09886 21-83222 22:029869 0-004712 2-156333 1-741958 —0:023810
7 1973091 2535315 25-516311 —0-003465 —2:344676 —2-022888 0-019687
8 22:24912 2874932 28-881434 0-002650 2-538816 2-293863 —0016525
9 24-65801 32:02164 32:127179 —0-002083 —2738571 —2-554957 0-014013
10 2696373 35:17390 35-257511 0-001665 2942621 2-806470 —0-011971
11 2917319 3821163 38277614 —0001349 —3-149157 —3:048846 0-010287
12 3129342 41-14123 41193308 0-001100 3356319 3282594 —0-008886
13 33-33126 4396944 44-010644 —0-000905 —3:562490 —3-508253 0-007715
14 3529316 46-70290 46-735647 0000747 3766375 3-727149 —0-006733
15 3718507 49-34799 49374148 —0-000621 —3:967045 —3:937399 0-005906
16 39-01244 5191070 51-931691 0-000516 4-163881 4141874 — 0005208
17 40-78023 54:39659 54413483 —0:000434 —4356514 —4:340219 0-004618
18 42:49291 56-81076 56-824372 0-000362 4-544751 4-532842 —0-004116
19 4415453 5915793 59-168854 —0-000309 —4:728537 —4-720119 0-003688
20

4576873 61-44239 61-451077 0-000259 4907891 4-902393 —0-003321
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Table 1—continued

(5) Pe = oo (No axial diffusion)

n j'Vl ﬁﬂ
1 2.404825 2:704364
2 5-520078 6-679031
3 8653727 10-67338
4 11-791534 14-67108
5 14930917 18-66987
6 18071063 22-66915
7 21211636 2666868
8 24-352471 30-66835
9 27493479 3466813
10 30634606 3866798
11 33775820 4266789
12 36917098 46:66786
13 40-058425 5066788
14 43199791 5466797
15 46:341188 5866814
16 49-482609 6266839
17 52624051 6666873
18 55765510 70-66920
19 58906983 74:66979
20 62:048469 78-67054

G, Ri{1) [ 1R, dy
—0-286463 —1-014300 0-196798
0-049572 1-349241 —-0082971
—0-019679 — 1572319 0-052554
0010483 1-746004 —0-038465
—0-006498 —1-890852 0-030337
0-004419 2016461 —0-025047
—0-003199 —2:128157 0-021330
0-002422 2229232 —0-018574
—0-001898 —2:321909 0-016449
0-001526 2407722 —0014761
—0-001255 —2487811 0-013387
0-001049 2-563038 —-0012247
—0-000892 —2:634056 0-011286
0-000764 2:701408 —0:010465
—0-000666 —2:765517 0009755
0-000581 2-826715 —~0009135
—0-000517 —2:885277 0-008589
0-000456 2-941461 —0-008104
—0-000414 —2:995421 0-007671
3047334 —0-007281

0-000367

and the complete concentration solution is

Vun) =41 =) =) &)
=1 "

JO(“nﬂ)

‘Il(“n)
where 4, is related to a,, the roots of Jo(2,) = 0,
through equation (10). It should be pointed out
that equation (13) differs from that of the case
of no axial diffusion only in that 4, are now the
eigenvalues which are dependent on the Péclét
number. As the Péclét number approaches
infinity, however, 4, — o, and equation (13)
reverts to the corresponding equation for the
case of no axial diffusion [1].

The first twenty eigenvalues, 4,, are tabulated
in Table 1 for Péclét numbers of 1, 5, 10, 100 and
co. It is noted that at small Péclét numbers the
consecutive higher eigenvalues do not vary
appreciably in magnitude. This means that in
the series summation, as in equation (13), the
series converges slowly at smaller Péclét num-
bers, necessitating an increase in the number of

X exp(— Azp)  (13)

eigenvalues to be included in the computation.
The concentration profiles calculated from
equation (13) at £ = 0-01 (1 = 0-02) are shown

10

Pe =00 (no oxial
Peg =10 diffusion)

Pe =|

1€ =001
2¢ =005
3¢ =01
4¢ =05
581

6 &>l

o8
%

06

——

4y

04

Fi1G. 2. Variation of entrance-region concentration profiles
for a slug flow.
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in Fig. 1 for several Péclét numbers. It is seen
that the effect of axial diffusion is a greater
decrease in the mass concentration, the smaller
the Péclét number. Variations of the entrance-
region concentration profiles are illustrated in
Fig 2 for Pe = 1,10 and oc. It is observed that
for Pe > 1, the concentration profiles at £ > 1
already approach the fully established profile
given by equation (3).

Solution for parabolic-velocity profile
For the Poiseuille pipe flow, A, = 2(1 — 5?)
and A, = 0 and equation (4) becomes

p* 18 [ oy
t-m =5 0%)
1 Zaz‘p*
+<Eﬁ e (19

to be satisfied by the same boundary conditions
depicted by equation (5). Again, one seeks solu-
tion in the same form as that for the case of no
axial diffusion, i.e.

Y& =

Substitution of the above into equations (5) and
(14) yields

Z C.R.(mexp(=B78).  (15)

1
R:+5R;+Bﬁ

x I:(l -3+ <£2

R{0)=0
and the following relationship

)]R =0 (16

17

with

and

R(1) =0

CHIA-JUNG HSU

2 CoRyfi) = =31 — 1) (18)
necessary for the determination of the coefficients
of series expansion, C,.

Because Singh’s method [6] does not readily
render higher eigenvalues which are needed
especially for small Péclét numbers, Hsu’s
method is employed here. Following Hsu [5],
the eigenvalues, f,, and eigenfunctions, R,(n), are
determined directly by solving equation (16)
with the aid of a CDC-6600 computer using the
Runge-Kutta scheme. For each preassigned
value of Péclét number, the eigenvalues are
determined by trial and error procedure so that
equations (16) and (17) are simultaneously
satisfied. The first twenty values of f, thus
determined are tabulated in Table 1 for Péclét
number of 1, 5, 10, 100 and oo. The eigenvalues
are seen to increase with increasing Péclét
numbers and approach asymptotically those for
the case of no axial diffusion. It is again noted
that at small Péclét numbers the consecutive
higher eigenvalues do not vary appreciably in
magnitude. The quantity R;(1) is related to the
mass flux at the wall and occurs frequently in
subsequent analyses and is thus included in
Table 1.

It is noted that the eigenfunctions, R,(#), are
not mutually orthogonal and, as such, the
eigenfunction expansion technique widely used
for the “‘Sturm-Liouville” system cannot be
utilized here in evaluating the coefficients C,.
However, multiplying both sides of equation (18)
by 1R,[g(n, B) — g(n, B,)], integrating fromOto 1,
and utilizing 'Hospital’s rule, the series co-
efficients, C,, can be found to be

1

o9
Jn(l - 1) R, (aﬁ

0

-&l*—‘

)ﬁ Bn

1

.



MASS TRANSFER OF DECAYING PRODUCTS 1895

a LAY R C [(1— 2) 42 ﬁ>2 R R d
~3 1—n%)+ Pe nl—n n- m||(L—1n pe ) [MRmRndn
__ e (19)

-8 v

where g(n, 8,) = B2 [(1 — n*) +(B,/Pe)*] and B is considered as a parameter. Utilizing the relation-
ship

1 g2 + B
H(l— )+ ey ]RRdn_O (m # 1) 20)
0

obtainable from equation (16), the infinite series in equation (19) can be simplified, and thus

i B\’ AN i
—_ ZJ‘I:(I — ;12) + 2<Pe> ]ﬂ(l — nz) R,dn — WZ (ﬂf - Brzn) Cn janRn dn
0 m=1 0

Cr = 1 L@

j[a — )+ 2(%) ]nR& dn

0

Let Equation (22) represents a set of infinite simul-
. taneous equations which can then be solved

1 ) 8.\, for the unknowns, C,. In this study, the infinite
“}1 -1+ 2( ) ' series was truncated at m = 20, which was found

o to give satisfactory converging solutions. It was

« y(l — n?) R dy = I further shown that by choosing m > 20 it does

" " not significantly improve the solutions. With

! B,\2 m = 20, equation (22) gives rise to 20 simultane-
J‘[(l -7’ +2 (—") :lnR,f dn = J, ous equations which were solved by utilizing
Pe the ““Gauss elimination technique” with a CDC-

. 6600 computer. Thus, let
G,%(ﬂf—ﬂ,ﬁ)jnR,,,R,,dn:F,,m [Ji Ty i3 o1y 207
e ,
0 F2,1 J2 r2,3 "'FZ,ZO
equation (21) can be written as {4} =

CJ,+ Z InwChp=I, (n=123,.) (22) : .
e Iy0,1T20,2120,3---J20

m#*n L . , . .



1896

[Cy ] [, ]

C, I,

C, 15
{X} =1 s {B} =

[Ca0 | [ 120 |

equation (22) can be written in a matrix form as
{X} = {4} {B} (23)

where {4}~ ! is the inverse of matrix {4}. The
coefficients of series expansion, C,, are deter-
mined from equation (23) and tabulated in
Table 1. The caiculated C, coefficients were
actually substituted into equation (18) and it
was ascertained that they indeed satisfy equation
(18) very well. This can, in fact, be regarded as a
proof of the mathematical correctness of the
present solutions.

It is noted that the diagonal elements of the
matrix, {4}, are actually dominating. In other
words, the off-diagonal elements, I', . are, in

Pe = oo (no axial
Pe = diffusion)

Pe =i

|§=o-ou
2£:008
3§:01

4§05
5&x1
6&2

[0F:] o

06

ay

e
—
-~

04

02

. — e — o .

FiG. 3. Variation of entrance-region concentration profiles
for a Poiseuille pipe flow.

C. W. TAN and CHIA-JUNG HSU

general, much smaller than J, In fact, as
Pe — oo, I', ,, = 0. This indicates that the terms
in the infinite series in equation (21) are small
and may be neglected. Approximately, therefore,
one can calculate C, from the following equation
directly without solving a set of simultaneous
equations.

[(L = n?) + 2B,/Pe)*]
x n(l — n?)R,dn

—1
s

Oy =

Cp = (24)
2 2 2
g[(l — %) + 2B./Pe)*] n R2 dn
20 (
18 | Pe =|
2 Pe =5
3 Pe =10
4 Pe =20
5 Pe =50
-6 6 Pe 2100
14
12
bs)
x
5 10
08
06
04l
02
! i
0 02 04 06 08 [ie)
n
FiG. 4. Concentration profiles at £ = 0-01 for a Poiseuille
pipe flow.
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Errors introduced by such an approximation are
small (~ 2-3 per cent).

The complete concentration solution, thus,
is given by

(&) =31 - n?)
+ 2 C.R(mexp(—Br8).  (25)

Some typical profiles are shown in Fig 3 for
Pe =1, 10 and oo. It is observed that again in
this case of Poiseuille pipe flow, the concentra-
tion profiles at ¢ > 1 for Pe > 1 almost coincide
with that representing the case of no axial
diffusion. The concentration profiles at £ = 0-01
are shown in Fig 4 for several Péclét numbers.
It is interesting to observe that, in comparison
with the corresponding profiles based on the
slug flow (Fig. 2), the concentrations are greatly
reduced in the central core, apparently due to
the accelerated central-core flow in the Poiseuille
pipe flow.

The trial and error procedure used in deter-
mining the eigenvalues f, from equations (16)
and (17) can be facilitated by finding the
asymptotic expression for the -eigenvalues.
Following Sellars et al. [7] and taking into
consideration the effect of axial diffusion, the
eigenfunctions R,(n), for 0 < n <1 and suffi-
ciently large f8,, may be given by the so-called
WKB approximations:
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— 1 _ 1
X sm [W]}— 7[(" 4). (27)

The roots of equation (27) for an arbitrarily
preassigned value of Péclét number represent,
therefore, the desired asymptotic eigenvalues
for the particular Péclét number. These values
are included in Table 1 for comparison with the
exact values obtained by directly solving equa-
tions (16) and (17). It is surprising to note that
whereas the asymptotic expression is supposed
to be valid for very large §, in actuality values of
n as small as 1 for Pe = 1, 2 for Pe = 5, 3 for
Pe = 10, 4 for Pe = 20, 5 for Pe = 30, 6 for
Pe =50, and 8 for Pe = 100 give errors of
only within 0-5 per cent of the actual values.

From equation (26), the asymptotic expression
for the first derivative of the eigenfunction at
the wall can be found to be

OB E

The asymptotic values of R,(1), denoted by
[Ry(1)]asym.» are also tabulated in Table 1 for
comparison with the actual values.

=1,2..). (28)

PHYSICAL ANALYSES

The aforementioned mathematical analyses
give the local concentration distributions of the
radio-elements within the cylindrical tube and,

cos {B, | [1 = {2 + (B/Pe)]* dL — n/d}
0 ——— e e
(mBm/2F[1 — 1* + (B,/Pe)* ]t

R,(n) =

_ cos {(B/2n/[1 = 72 + (B/Pe)?] + (B [1 + (B/Pef*] sin™* (n/y/[1 + (B/Pe)’]) — m/d}.

(Bn/2)t [1 — n* + (B,/Pe)*]*

(26)

To satisfy the boundary condition R,(1) = 0,
it is required that

NG « [ ()]

thus, provide the basis for such physical
analyses as the local bulk concentration, the
local Sherwood number, and the parameter F (£)
used in the experimental determination of the
coefficient of diffusion [1, 2].
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Fi1G. . Variation of bulk concentration in the entrance-region of a slug flow.
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F1G. 6. Variation of bulk concentration in the entrance-region of a Poiseuille pipe flow.
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F1G. 7. Variations of Sherwood number in the entrance-region of a slug flow.
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3

F1. 8. Variations of Sherwood number in the entrance-region of a Poiseuille pipe flow.
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Local bulk concentration and Sherwood number
Defining the local bulk concentration as

ro
{verdr
0

Cb =

ro
{ograr
0

we get,

1
[ ALE M (& n)ndy
Dey _a )

&) =
a5 g ALE m ndn

It can be readily shown that for the uniform-
velocity flow,

¥ = Z ;:[1 — exp(—Z;1)] (30a)

n=1

C. W. TAN and CHIA-JUNG HSU

density, I, at the wall is

oc oy

Defining a mass-transfer coefficient, hp, such
that h, = I/c,, and invoking the above expres-
sion for the mass flux density, one obtains the
local Sherwood number as

1-2 3 CRexp(—42)

Sh=6d ML

1= 24 3 C,[AR) R(D) + (B/Pe [nR,drlexp (~F30)]

(2ro) ( 2 ) [ﬁw]
Sh=-229_ _[Z)]|=E 31)
D U/ | On n=1
which, for the uniform-velocity flow,
L= 3 @/adyexp (=4 p)
Sh =28 nd (32a)
1= Y (32/od)exp(—22p)
n=1
and, for the parabolic-velocity flow, is
(32b)

and that for the parabolic-velocity flow,

=4 — 42 C"[(ﬂi) Ry(1)

n=1
1

2
+ (%) [r/R,, dn] exp (—BZ&). (30b)
’ .

The first twenty values of [#R,dn are also
[

tabulated in Table 1 for the Péclét numbers
considered herein. The bulk concentrations
depicted by equations (30a) and (30b) are
shown, respectively, in Figs. 5 and 6. As expected
the local bulk concentration decreases with
decreasing Péclét numbers. It is again observed
that in both cases the fully established bulk
concentration is approached at ¢>1 for
Pe > 1.

By the Ficks® law of diffusion, the mass flux

The local Sherwood numbers for both the
uniform-velocity and parabolic-velocity profiles
are, respectively, shown in Figs. 7 and 8 for
various Péclét numbers. It is seen that in both
cases the Sherwood number increases with
increasing Péclét numbers at small ¢ values;
namely, ¢ < 002 for the uniform-velocity flow,
and & < 004 for the parabolic-velocity flow.
At larger ¢ values, however, the Sherwood
number for a smaller Péclét number is slightly
higher than that for a larger Péclét number.
As & - o0, Sh — 8 for the slug flow and Sh — 6
for the Poiseuille pipe flow, independent of the
Péclét numbers.

The parameters F(£) and F¥(E)

The parameter F (), defined as the rate
of the total particle flux over a cross-section at
distance x from the tube inlet to the rate of
formation of the radio-clements in the same
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volume element of the tube, i.e.

2n rf v,crdr
) = — e —
1 1

Ay
(=]

has been of great interest to experimenters in
their laboratory determination of the coefficients
of diffusion of disintegration products of an
inert gas. The determination of the coefficient
of diffusion of radium-A particles resulting
from the disintegration of radon in air, carried
out by Thomas et al. [2], is one such example.

The parameter F(£) can be found for the
uniform-velocity flow as:

F /(&)= 52( )[1 exp (—42p)] (34a)

and for the parabolic-velocity flow as:

1{1 - 1}
o= -2, | (7) mo

2 1
" (£Z> f"Rnd"]exp(—B,%é)} (34b)
0

The F ((£) values calculated from equations (34a)
and (34b) are shown, respectively, in Figs. 9 and
10 for various Péclét numbers. It is seen that
F,(£) values decrease with decreasing Péclét
numbers. It is further observed that, in both the
slug and Poiseuille pipe flows, the curve for
Pe = 100 deviates from that for Pe = o0 at
¢ < 0-02, more at smaller £ values. This indicates
that for Pe < 100, the effect of axial diffusion
is still significant for ¢ < 0-02. In fact: from
Figs. 9 and 10, it is observed that the effect of
axial diffusion is negligible only for Pe = 100
and £ > 002; Pe =50 and ¢ > 0'1; Pe =10
and £ > 0'5;and Pe = 1 and ¢ > 5 (not shown).
Recalling that £ = x/(r,. Pe), it can thus be
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concluded that the effect of axial diffusion may
be neglected at an axial distance from the tube
inlet greater than two and a half times that of
the tube diameter for 1 < Pe < 100.

In defining the parameter F (£), the local
axial particle flux has been taken to be the
convective flux given by the product of the local
concentration and local fluid velocity, ie.
J. = v,e. To account for axial diffusive flux
in the presence of axial diffusion, the axial
particle flux should become f, = v.c — D{dc/0x).
One can thus define a new parameter F(¢) as

2n f [vsc — D(Oc/ox))r dr
0

F3(&) =

nrixq

1| 2 o
=3 I [Axlﬁ Per 3 5] ndn  (35)
0

which reverts to F(¢) as Pe — co. With this
redefinition, one obtains

wn 1(1 N 1
FiQ= E{IE -2 Z A3[1 + 24, /Pe)]

x CXP(—iﬁu)} (36a)

for the uniform-velocity flow, and

F}(Q) = {12 Z B"R,.(l)

x exp (—p; é)} (36b)

for the parabolic-velocity flow.

The F}(&) values calculated from equations
(36a) and (36b) are, respectively, shown in Fig 11
and 12. Because the particle flux due to axial
diffusion is in the negative x-direction in the
entrance-region for finite values of Péclét
numbers (see Figs. 2 and 3), the F(&) values
decrease markedly with decreasing Péclét
numbers. At small ¢ values, F}(&) values become
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Fic. 9. Variation of F {£) in the entrance-region of a slug flow.
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F1c. 10. Variation of F {£) in the entrance-region of a Poiseuille pipe flow.
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Fi1G. 11. Variation of F¥(¢) in the entranceregion of a slug flow.
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FiG.

. 12. Variation of F¥(¢) in the entrance-region of a Poiscuille pipe flow.
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negative, indicating the upstream-bound axial
diffusion flux [ie. D(dc/dx)] prevails over the
downstream-bound convective flux (ie. v.c)
The negative F}(£) values are not shown in
Fig. 11 and 12 since they do not represent
physically meaningful data.

It should be borne in mind, therefore, that in
using the F (¢)values, defined by equation (33),
in the experimental determination of the co-
efficient of diffusion, one has neglected the
axial diffusive flux which becomes more import-
ant as { values and Pe get smaller. The F ({)
values thus obtained tend to be higher than the
actual values whenever axial diffusion plays a
role.

6.

C. W. TAN and CHIA-JUNG HSU
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TRANSFERT DE MASSE DE PRODUITS EN DECOMPOSITION AVEC
DIFFUSION AXIALE DANS DES TUBES CYLINDRIQUES

Résumé- - Le probléme du transfert de masse stationnaire avec diffusion axiale de produits en décomposition
résultat de la désintégration d’un gaz inerte dans un tube cst considéré pour un écoulement en bloc et
du type Poiseuille. Les produits de désintégration sont filtrés vers I’'extérieur du tube de gaz inerte le long
du tube cylindrique. Les radio-éléments diffusent axiallement et radialement jusqu’aux parots du tube
ou ils se décomposent en d’autres radio-¢léments.

A cause de la dépendance du nombre de Péclét, les effets de la diffusion axiale sur la distribution de
concentration, le nombre de Sherwood local, et les valeurs de F(&) sont étudiés pour les nombres de Péclét
1. 5,10, 20, 30, SO et .

Pour I'écoulement du type Poiseuille, les expressions asymptotiques pour les valeurs propres ct R,/ (1)

sont ainsi obtenues.

MASSENTRANSPORT ZERFALLENDER PRODUKTE BEI AXIALER DIFFUSION IN
ZYLINDRISCHEN ROHREN

Zusammenfassung—Das Problen des Massentransportes im stationdren Zustand bei axialer Diffusion
zerfallender Produte, wie es sich infolge der Zersetzung eines Inertgases ergibt, wird fiir eine schleichende
Rohrstrémung und fiir eine Poiseuillesche Rohrstrdmung untersucht. Die Zerfallsprodukte werden langs
der zylindrischen Réhre herausgefiltert. Die radioaktiven Elemente diffundieren axial und radial zu den
Rohrwiinden und zerfallen dort in andere radioaktive Elemente. Aus der Abhingigkeit von der Péclet-
zahl kann die Wirkung der axialen Diffusion auf die Konzentrationsverteilung, auf die Srtliche Sherwood-
zahl und auf die F({)-Werte fiir Péclét-zahlen von 1, 5, 10, 20, 30, 50 und ermittelt werden. Fiir laminare
Rohrstromung werden auch asymptotische Ausdriicke fiir die Eigenwerte und fir R)(1) erhalten.

MACCOOBMEH HPOJVRTOB PABJIOKREHHWS IIPH OCEBOU
JUOOY3UA B HAJAUHAPUYECKIX TPYBAX

AHHOTAIMA—PaceMoTpeHa 3aiada  CTALHOHAPHOro MaccooOMeHa Ipu 0CeBOM aubdysnu
TPOIYKTOR PaJHOAKTUBHOIO PAIOHEHUA UHEPTHOIO Ia3a IPH NOJBYYEM I ITyaseleBCloM
revennn. TTPOIVKTH PasionieHUA (PUIABTPYIOTCA B IITEPTHOM Tasc BROIL IUIMHIDUUECKOl



MASS TRANSFER OF DECAYING PRODUCTS 1905

TpyOnt. PajuoanTuBible 2aeMeHThl JUHPPYHANPYIOT 110 OCH M 110 PAULYCAM K cTeHRaM TpyObL,
rje OHM PaslaraioTesd HA APYTHe PATHOAKTHBHBIE DHIIEMEHTDHL.
Wecnepyeress Bavsnne ocenoll guddysmu Ha pacrpeleieHHe KOHIEHTPALUH, JOKaJIbHOe
uucao [epsyga u suadenns F(E) aus uncesn Hewse 1,5, 10, 20, 30, 50 1 .
Jdaa nyaseitmeBckoro tedenus B Tpyiax noJAv4eHbl aCHMUTOTHYECKNE BBIPAKEHHS JIH
coferBenunix 3uavennit n R’ (1).



